Z(3)-symmetric effective theory for pure gauge QCD at high temperature

Aleksi Vuorinen
University of Washington, Seattle

PRD 74: 025011 (2006), hep-ph/0604100 with Larry Yaffe

Outline

- Background
 - Dimensional reduction and QCD
 - The center symmetry and the Wilson line
- Construction of the new theory
 - Degrees of freedom, potentials
 - Perturbative matching to full theory
 - The Z(3) domain wall
- Phase diagram of the new theory
- Conclusions and future directions

QCD and dimensional reduction

• Conventional DR: at high $T \gg gT$, integrate out all non-static modes $(m \sim 2\pi T)$ to obtain 3d effective theory for the static modes

$$\mathcal{L}_{\text{EQCD}} = g_3^{-2} \Big\{ \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} [(D_i A_0)^2] + m_{\text{E}}^2 \operatorname{Tr} (A_0^2) + \lambda_{\text{E}} \operatorname{Tr} (A_0^4) \Big\} + \delta \mathcal{L}_{\text{E}},$$
 $g_3 \equiv \sqrt{T} g, \ m_{\text{E}} \sim gT, \ \lambda_{\text{E}} \sim g^2$

QCD and dimensional reduction

• Conventional DR: at high $T\gg gT$, integrate out all non-static modes $(m\sim 2\pi T)$ to obtain 3d effective theory for the static modes

$$\mathcal{L}_{\text{EQCD}} = g_3^{-2} \Big\{ \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} [(D_i A_0)^2] \\ + m_{\text{E}}^2 \operatorname{Tr} (A_0^2) + \lambda_{\text{E}} \operatorname{Tr} (A_0^4) \Big\} + \delta \mathcal{L}_{\text{E}}, \\ g_3 \equiv \sqrt{T} g, \ m_{\text{E}} \sim gT, \ \lambda_{\text{E}} \sim g^2$$

• New theory sufficient to describe equilibrium thermodynamics at length scales $\gtrsim 1/(gT)$

QCD and dimensional reduction

• Conventional DR: at high $T \gg gT$, integrate out all non-static modes $(m \sim 2\pi T)$ to obtain 3d effective theory for the static modes

$$\mathcal{L}_{\text{EQCD}} = g_3^{-2} \Big\{ \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} [(D_i A_0)^2] \\ + m_{\text{E}}^2 \operatorname{Tr} (A_0^2) + \lambda_{\text{E}} \operatorname{Tr} (A_0^4) \Big\} + \delta \mathcal{L}_{\text{E}}, \\ g_3 \equiv \sqrt{T} g, \ m_{\text{E}} \sim gT, \ \lambda_{\text{E}} \sim g^2$$

- New theory sufficient to describe equilibrium thermodynamics at length scales $\gtrsim 1/(gT)$
- Parameters available through comparison of long distance correlators in EQCD and full QCD

• Partial success: impressive perturbative results derived at high ${\cal T}$

- Partial success: impressive perturbative results derived at high ${\cal T}$
 - Problems in non-perturbative regime

- Partial success: impressive perturbative results derived at high ${\cal T}$
 - Problems in non-perturbative regime

• Fundamental problem: all symmetries of original theory are *not* respected by the reduction!

The center symmetry

• Full gauge symmetry of SU(3) Yang-Mills theory

$$A_{\mu}(x) \to s(x) \left(A_{\mu}(x) + i \partial_{\mu} \right) s(x)^{\dagger}, s(x) \in SU(3)$$
$$s(x + \beta \hat{e}_t) = z s(x), z \in Z(3)$$

The center symmetry

• Full gauge symmetry of SU(3) Yang-Mills theory

$$A_{\mu}(x) \to s(x) \left(A_{\mu}(x) + i \,\partial_{\mu} \right) s(x)^{\dagger}, s(x) \in SU(3)$$
$$s(x + \beta \,\hat{e}_t) = z \,s(x), z \in Z(3)$$

under which the Wilson line transforms as a Z(3) fundamental

$$\Omega(\mathbf{x}) \equiv \mathcal{P} \exp \left[i \int_0^\beta d\tau \, A_0(\tau, \mathbf{x}) \right]$$
Tr $\Omega(\mathbf{x}) \rightarrow z \operatorname{Tr} \Omega(\mathbf{x})$

The center symmetry

• Full gauge symmetry of SU(3) Yang-Mills theory

$$A_{\mu}(x) \to s(x) \left(A_{\mu}(x) + i \,\partial_{\mu} \right) s(x)^{\dagger}, s(x) \in SU(3)$$
$$s(x + \beta \,\hat{e}_t) = z \,s(x), z \in Z(3)$$

under which the Wilson line transforms as a Z(3) fundamental

$$\Omega(\mathbf{x}) \equiv \mathcal{P} \exp \left[i \int_0^{\beta} d\tau \, A_0(\tau, \mathbf{x}) \right]$$
Tr $\Omega(\mathbf{x}) \rightarrow z \operatorname{Tr} \Omega(\mathbf{x})$

 \bullet Ω order parameter for deconfinement transition

•
$$|\langle \operatorname{Tr} \Omega(\mathbf{x}) \rangle| = e^{-\beta \Delta F_q(\mathbf{x})}$$

- In deconfined phase, effective potential for Ω has degenerate minima $\Omega_{\min} \sim e^{i2\pi n/3} \mathbb{1}, n \in \{0, 1, 2\}$
 - Tunnelings between different vacua important near T_c
 - At (1st order) phase transition quadruple point with phase coexistence with the confining one

- In deconfined phase, effective potential for Ω has degenerate minima $\Omega_{\min} \sim e^{i2\pi n/3} \mathbb{1}$, $n \in \{0, 1, 2\}$
 - Tunnelings between different vacua important near T_c
 - At (1st order) phase transition quadruple point with phase coexistence with the confining one
- EQCD Lagrangian derived expanding effective potential around $A_0=0$
 - Z(3) invariance lost
 - Complex Z(3) minima $A_0 = \frac{2\pi T}{3}$ completely outside the domain of validity of eff. theory
 - (One important) cause of problems in EQCD phase diagram and predictions near T_c

- Want to build a superrenormalizable 3d effective theory that
 - Reduces to EQCD at high T
 - Respects Z(3), correct domain wall physics

- Want to build a superrenormalizable 3d effective theory that
 - Reduces to EQCD at high T
 - Respects Z(3), correct domain wall physics
- Minimal set of dof's: A_i and Ω
 - $\Omega \in SU(3) \Rightarrow$ polynomial Lagrangian non-renormalizable

- Want to build a superrenormalizable 3d effective theory that
 - Reduces to EQCD at high T
 - Respects Z(3), correct domain wall physics
- Minimal set of dof's: A_i and Ω
 - $\Omega \in SU(3) \Rightarrow$ polynomial Lagrangian non-renormalizable

Sigma Models	
Non-linear	Linear
$\overline{\phi}\cdot\overline{\phi}=1$	Polynomial V
Same long distance physics!	

- Want to build a superrenormalizable 3d effective theory that
 - Reduces to EQCD at high T
 - Respects Z(3), correct domain wall physics
- Minimal set of dof's: A_i and Ω
 - $\Omega \in SU(3) \Rightarrow$ polynomial Lagrangian non-renormalizable
- New (old) idea: replace Ω by $\mathcal{Z} \in GL(3,\mathbb{C})$
 - Coarse-grained version of Ω
 - After gauge fixing, contains 10 2 = 8 unphysical dof's that are chosen heavier $(m \sim T)$ than the physical ones $(m \lesssim gT)$

Require gauge and Z(3) invariance

$$\mathcal{Z}(\mathbf{x}) \rightarrow s(\mathbf{x}) \mathcal{Z}(\mathbf{x}) s(\mathbf{x})^{\dagger},$$
 $\mathbf{A}(\mathbf{x}) \rightarrow s(\mathbf{x}) (\mathbf{A}(\mathbf{x}) + i \nabla) s(\mathbf{x})^{\dagger},$
 $\mathcal{Z}(\mathbf{x}) \rightarrow e^{2\pi i n/3} \mathcal{Z}(\mathbf{x})$

Require gauge and Z(3) invariance

$$egin{aligned} \mathcal{Z}(\mathbf{x}) &
ightarrow s(\mathbf{x}) \, \mathcal{Z}(\mathbf{x}) \, s(\mathbf{x})^\dagger, \ \mathbf{A}(\mathbf{x}) &
ightarrow s(\mathbf{x}) \, (\mathbf{A}(\mathbf{x}) + i
abla) \, s(\mathbf{x})^\dagger, \ \mathcal{Z}(\mathbf{x}) &
ightarrow \mathrm{e}^{2\pi i n/3} \, \mathcal{Z}(\mathbf{x}) \end{aligned}$$

and compose Lagrangian as

$$\mathcal{L} = g_3^{-2} \left\{ \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} \left(D_i \mathcal{Z}^{\dagger} D_i \mathcal{Z} \right) + V(\mathcal{Z}) \right\},$$

$$V(\mathcal{Z}) = V_0(\mathcal{Z}) + g_3^2 V_1(\mathcal{Z})$$

• Require gauge and Z(3) invariance

$$\mathcal{Z}(\mathbf{x}) \rightarrow s(\mathbf{x}) \mathcal{Z}(\mathbf{x}) s(\mathbf{x})^{\dagger},$$
 $\mathbf{A}(\mathbf{x}) \rightarrow s(\mathbf{x}) (\mathbf{A}(\mathbf{x}) + i \nabla) s(\mathbf{x})^{\dagger},$
 $\mathcal{Z}(\mathbf{x}) \rightarrow e^{2\pi i n/3} \mathcal{Z}(\mathbf{x})$

and compose Lagrangian as

$$\mathcal{L} = g_3^{-2} \Big\{ \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} \left(D_i \mathcal{Z}^{\dagger} D_i \mathcal{Z} \right) + V(\mathcal{Z}) \Big\},$$

$$V(\mathcal{Z}) = V_0(\mathcal{Z}) + g_3^2 V_1(\mathcal{Z})$$

• V_0 "hard"; biased towards unitary \mathcal{Z}

• Require gauge and $\overline{Z}(3)$ invariance

$$\mathcal{Z}(\mathbf{x}) \rightarrow s(\mathbf{x}) \mathcal{Z}(\mathbf{x}) s(\mathbf{x})^{\dagger},$$
 $\mathbf{A}(\mathbf{x}) \rightarrow s(\mathbf{x}) (\mathbf{A}(\mathbf{x}) + i \nabla) s(\mathbf{x})^{\dagger},$
 $\mathcal{Z}(\mathbf{x}) \rightarrow e^{2\pi i n/3} \mathcal{Z}(\mathbf{x})$

and compose Lagrangian as

$$\mathcal{L} = g_3^{-2} \Big\{ \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} \left(D_i \mathcal{Z}^{\dagger} D_i \mathcal{Z} \right) + V(\mathcal{Z}) \Big\},$$

$$V(\mathcal{Z}) = V_0(\mathcal{Z}) + g_3^2 V_1(\mathcal{Z})$$

- V_0 "hard"; biased towards unitary \mathcal{Z}
- V_1 "soft"; lifts degeneracy and ensures high-T matching to EQCD

$$V(\mathcal{Z}) = V_0(\mathcal{Z}) + g_3^2 V_1(\mathcal{Z})$$

$$V_0(\mathcal{Z}) = c_1 \operatorname{Tr} \left[\mathcal{Z}^{\dagger} \mathcal{Z} \right] + c_2 \left(\det \left[\mathcal{Z} \right] + \det \left[\mathcal{Z}^{\dagger} \right] \right)$$

$$+ c_3 \operatorname{Tr} \left[(\mathcal{Z}^{\dagger} \mathcal{Z})^2 \right]$$

$$V(\mathcal{Z}) = V_0(\mathcal{Z}) + g_3^2 V_1(\mathcal{Z})$$

$$V_0(\mathcal{Z}) = c_1 \operatorname{Tr} \left[\mathcal{Z}^{\dagger} \mathcal{Z} \right] + c_2 \left(\det \left[\mathcal{Z} \right] + \det \left[\mathcal{Z}^{\dagger} \right] \right)$$

$$+ c_3 \operatorname{Tr} \left[(\mathcal{Z}^{\dagger} \mathcal{Z})^2 \right]$$

• Gives heavy fields their masses

$$V(\mathcal{Z}) = V_0(\mathcal{Z}) + g_3^2 V_1(\mathcal{Z})$$

$$V_0(\mathcal{Z}) = c_1 \operatorname{Tr} \left[\mathcal{Z}^{\dagger} \mathcal{Z} \right] + c_2 \left(\det \left[\mathcal{Z} \right] + \det \left[\mathcal{Z}^{\dagger} \right] \right)$$

$$+ c_3 \operatorname{Tr} \left[(\mathcal{Z}^{\dagger} \mathcal{Z})^2 \right]$$

- Gives heavy fields their masses
- With $c_2 < 0 < c_3$ and $c_2^2 > 9c_1c_3$, V_0 minimized by $Z = \frac{1}{3}v\Omega$ with $\Omega \in SU(3)$ and

$$v \equiv \frac{3}{4} \left(\frac{-c_2 + \sqrt{c_2^2 - 8c_1c_3}}{c_3} \right)$$

$$V(\mathcal{Z}) = V_0(\mathcal{Z}) + g_3^2 V_1(\mathcal{Z})$$

$$V_0(\mathcal{Z}) = c_1 \operatorname{Tr} \left[\mathcal{Z}^{\dagger} \mathcal{Z} \right] + c_2 \left(\det \left[\mathcal{Z} \right] + \det \left[\mathcal{Z}^{\dagger} \right] \right)$$

$$+ c_3 \operatorname{Tr} \left[(\mathcal{Z}^{\dagger} \mathcal{Z})^2 \right]$$

- Gives heavy fields their masses
- With $c_2 < 0 < c_3$ and $c_2^2 > 9c_1c_3$, V_0 minimized by $Z = \frac{1}{3}v\Omega$ with $\Omega \in SU(3)$ and

$$v \equiv \frac{3}{4} \left(\frac{-c_2 + \sqrt{c_2^2 - 8c_1c_3}}{c_3} \right)$$

• Invariant under extra $SU(3) \times SU(3)$ symmetry $\mathcal{Z}(\mathbf{x}) \to A\mathcal{Z}(\mathbf{x})B, \ A, B \in SU(3)$

$$egin{aligned} V(\mathcal{Z}) &= V_0(\mathcal{Z}) + rac{g_3^2 V_1(\mathcal{Z})}{g_3^2 V_1(\mathcal{Z})} \ V_1(\mathcal{Z}) &= ilde{c}_1 \operatorname{Tr} igg[M^\dagger M igg] + ilde{c}_2 \left(\operatorname{Tr} igg[M^3 igg] + \operatorname{Tr} igg[(M^\dagger)^3 igg]
ight) \ &+ ilde{c}_3 \operatorname{Tr} igg[(M^\dagger M)^2 igg], \ M &\equiv \mathcal{Z} - rac{1}{3} \operatorname{Tr} \mathcal{Z} \mathbf{1} \equiv \mathcal{Z} - rac{1}{3} L \mathbf{1} \end{aligned}$$

$$V(\mathcal{Z}) = V_0(\mathcal{Z}) + \frac{g_3^2 V_1(\mathcal{Z})}{g_3^2 V_1(\mathcal{Z})}$$

$$V_1(\mathcal{Z}) = \tilde{c}_1 \operatorname{Tr} \left[M^{\dagger} M \right] + \tilde{c}_2 \left(\operatorname{Tr} \left[M^3 \right] + \operatorname{Tr} \left[(M^{\dagger})^3 \right] \right)$$

$$+ \tilde{c}_3 \operatorname{Tr} \left[(M^{\dagger} M)^2 \right],$$

$$M \equiv \mathcal{Z} - \frac{1}{3} \operatorname{Tr} \mathcal{Z} \mathbb{1} \equiv \mathcal{Z} - \frac{1}{3} L \mathbb{1}$$

• All $\tilde{c}_i \sim g^0$, but overall $g_3^2 \Rightarrow$ contributions to masses and coupling constants suppressed by g^2 with respect to V_0

$$V(\mathcal{Z}) = V_0(\mathcal{Z}) + \frac{g_3^2 V_1(\mathcal{Z})}{g_3^2 V_1(\mathcal{Z})}$$

$$V_1(\mathcal{Z}) = \tilde{c}_1 \operatorname{Tr} \left[M^{\dagger} M \right] + \tilde{c}_2 \left(\operatorname{Tr} \left[M^3 \right] + \operatorname{Tr} \left[(M^{\dagger})^3 \right] \right)$$

$$+ \tilde{c}_3 \operatorname{Tr} \left[(M^{\dagger} M)^2 \right],$$

$$M \equiv \mathcal{Z} - \frac{1}{3} \operatorname{Tr} \mathcal{Z} \mathbb{1} \equiv \mathcal{Z} - \frac{1}{3} L \mathbb{1}$$

- All $\tilde{c}_i \sim g^0$, but overall $g_3^2 \Rightarrow$ contributions to masses and coupling constants suppressed by g^2 with respect to V_0
- Vital for high-T matching to EQCD

$$V(\mathcal{Z}) = V_0(\mathcal{Z}) + \frac{g_3^2 V_1(\mathcal{Z})}{g_3^2 V_1(\mathcal{Z})}$$

$$V_1(\mathcal{Z}) = \tilde{c}_1 \operatorname{Tr} \left[M^{\dagger} M \right] + \tilde{c}_2 \left(\operatorname{Tr} \left[M^3 \right] + \operatorname{Tr} \left[(M^{\dagger})^3 \right] \right)$$

$$+ \tilde{c}_3 \operatorname{Tr} \left[(M^{\dagger} M)^2 \right],$$

$$M \equiv \mathcal{Z} - \frac{1}{3} \operatorname{Tr} \mathcal{Z} \mathbb{1} \equiv \mathcal{Z} - \frac{1}{3} L \mathbb{1}$$

- All $\tilde{c}_i \sim g^0$, but overall $g_3^2 \Rightarrow$ contributions to masses and coupling constants suppressed by g^2 with respect to V_0
- Vital for high-T matching to EQCD
- Assuming $\tilde{c}_3 > 0$ and $\tilde{c}_2^2 < \tilde{c}_1 \tilde{c}_3$, V_1 minimized by M = 0, i.e. $\mathcal{Z} = \frac{1}{3} L(\mathbf{x}) \mathbb{1}$

 $\overline{V}(\overline{Z})$ minimized by

•
$$c_2^2 > 9c_1c_3$$
: $\mathcal{Z} = \frac{v}{3} e^{2\pi i n/3} \mathbb{1}$

•
$$c_2^2 < 9c_1c_3$$
: $\mathcal{Z} = 0$

• $V(\mathcal{Z})$ minimized by

•
$$c_2^2 > 9c_1c_3$$
: $\mathcal{Z} = \frac{v}{3} e^{2\pi i n/3} \mathbf{1}$

•
$$c_2^2 < 9c_1c_3$$
: $\mathcal{Z} = 0$

Matching to EQCD

• To determine parameters c_i and \tilde{c}_i , consider fluctuations around non-trivial Z(3) minima

$$\mathcal{Z} = e^{2\pi i n/3} \left\{ \frac{1}{3} v \, \mathbb{1} + g_3 \left[\frac{1}{\sqrt{6}} \left(\phi + i \chi \right) \mathbb{1} + (h + ia) \right] \right\}$$

Matching to EQCD

• To determine parameters c_i and \tilde{c}_i , consider fluctuations around non-trivial Z(3) minima

$$\mathcal{Z} = e^{2\pi i n/3} \left\{ \frac{1}{3} v \, \mathbb{1} + g_3 \left[\frac{1}{\sqrt{6}} (\phi + i\chi) \mathbb{1} + (h + ia) \right] \right\}$$

and write the Lagrangian in terms of the shifted fields

$$\mathcal{L} = V_{\min} + \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \frac{1}{2} \left[(\partial_i \phi)^2 + m_{\phi}^2 \phi^2 \right] + \frac{1}{2} \left[(\partial_i \chi)^2 + m_{\chi}^2 \chi^2 \right] + \operatorname{Tr} \left[(D_i h)^2 + m_h^2 h^2 \right] + \operatorname{Tr} \left[(D_i a)^2 \right] + V_{\operatorname{int}}(\phi, \chi, h, a)$$

Matching to EQCD

• To determine parameters c_i and \tilde{c}_i , consider fluctuations around non-trivial Z(3) minima

$$\mathcal{Z} = e^{2\pi i n/3} \left\{ \frac{1}{3} v \, \mathbb{1} + g_3 \left[\frac{1}{\sqrt{6}} \left(\phi + i \chi \right) \mathbb{1} + (h + ia) \right] \right\}$$

and write the Lagrangian in terms of the shifted fields

$$\mathcal{L} = V_{\min} + \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \frac{1}{2} \left[(\partial_i \phi)^2 + m_{\phi}^2 \phi^2 \right] + \frac{1}{2} \left[(\partial_i \chi)^2 + m_{\chi}^2 \chi^2 \right]$$
$$+ \operatorname{Tr} \left[(D_i h)^2 + m_h^2 h^2 \right] + \operatorname{Tr} \left[(D_i a)^2 \right] + V_{\operatorname{int}}(\phi, \chi, h, a)$$

• ϕ , χ and h heavy fields, with masses giving c_i 's

$$c_1 = \frac{1}{6}(m_{\chi}^2 - 3m_{\phi}^2), c_2 = -m_{\chi}^2/v,$$

 $c_3 = \frac{3}{4}(m_{\chi}^2 + 3m_{\phi}^2)/v^2, m_h^2 = m_{\chi}^2 + m_{\phi}^2$

- At high enough T tunnelings between different vacua exponentially suppressed
 - Integrate out heavy fields ϕ , χ and h to make contact with EQCD

- At high enough T tunnelings between different vacua exponentially suppressed
 - Integrate out heavy fields ϕ , χ and h to make contact with EQCD
- Result: effective theory for a and A_i

$$\mathcal{L}_{\text{light}} = \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr}[(D_i a)^2 + m_a^2 a^2 + \tilde{\lambda} a^4]$$

- At high enough T tunnelings between different vacua exponentially suppressed
 - Integrate out heavy fields ϕ , χ and h to make contact with EQCD
- Result: effective theory for a and A_i

$$\mathcal{L}_{\text{light}} = \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr}[(D_i a)^2 + m_a^2 a^2 + \tilde{\lambda} a^4]$$

- Leading order parameters solely from V_1
 - $SU(3) \times SU(3)$ invariance guarantees V_0 does not contribute
 - Result: $\tilde{c}_1 = T + \mathcal{O}(g_3^2), \ \tilde{c}_3 = \frac{3}{4\pi^2 T} + \mathcal{O}(\frac{g_3^2}{T^2})$

- At high enough T tunnelings between different vacua exponentially suppressed
 - Integrate out heavy fields ϕ , χ and h to make contact with EQCD
- Result: effective theory for a and A_i

$$\mathcal{L}_{\text{light}} = \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr}[(D_i a)^2 + m_a^2 a^2 + \tilde{\lambda} a^4]$$

- Leading order parameters solely from V_1
 - $SU(3) \times SU(3)$ invariance guarantees V_0 does not contribute
 - Result: $\tilde{c}_1 = T + \mathcal{O}(g_3^2), \ \tilde{c}_3 = \frac{3}{4\pi^2 T} + \mathcal{O}(\frac{g_3^2}{T^2})$
- \tilde{c}_2 and v undetermined, but not needed to ensure new theory reproduces *all* EQCD predictions

Z(3) domain walls

• To capture Z(3) physics of the full theory, demand the effective one reproduce leading order domain wall properties

Z(3) domain walls

- To capture Z(3) physics of the full theory, demand the effective one reproduce leading order domain wall properties
- In effective theory, end up minimizing an energy functional expressed in terms of the phases of the eigenvalues of \mathcal{Z}

$$F_{\rm dw}[\alpha,\beta] \equiv F_{\rm grad} + F_{\rm soft} + F_{\rm fluc} =$$

$$g_3^{-1} (\pi \bar{v} T)^2 (\frac{2}{3} \sqrt{T})^3 \int_{-\infty}^{\infty} d\bar{z} \left[(\alpha')^2 + 3(\beta')^2 + U_1 + U_2 \right]$$
with $\bar{z} \equiv g_3 \sqrt{T} z$, $\bar{v} \equiv \frac{v}{T}$

Z(3) domain walls

In effective theory, end up minimizing

$$F_{\text{dw}}[\alpha, \beta] \equiv F_{\text{grad}} + F_{\text{soft}} + F_{\text{fluc}} =$$

$$g_3^{-1} (\pi \bar{v} T)^2 (\frac{2}{3} \sqrt{T})^3 \int_{-\infty}^{\infty} d\bar{z} \left[(\alpha')^2 + 3(\beta')^2 + U_1 + U_2 \right]$$

• Solve for α , β demanding that domain wall tension and width agree with full theory values

$$ullet$$
 $\sigma_{ ext{YM}}=rac{8\pi^2}{9}rac{T^3}{g(T)}$, $\Delta z_{ ext{YM}}=rac{\ln(4)-1/2}{g(T)\,T}$

• Solve for α , β demanding that domain wall tension and width agree with full theory values

•
$$\sigma_{ ext{YM}}=rac{8\pi^2}{9}rac{T^3}{g(T)}$$
 , $\Delta z_{ ext{YM}}=rac{\ln(4)-1/2}{g(T)\,T}$

• Result: v/T = 3.005868, $\tilde{c}_2 = 0.118914$

- Without perturbative matching, phase diagram parametrized by 6 dimensionless constants
 - With matching, overall scale v known and only g_3^2/v , m_{ϕ}/m_{χ} and m_{ϕ}/v remain

- Without perturbative matching, phase diagram parametrized by 6 dimensionless constants
 - With matching, overall scale v known and only g_3^2/v , m_{ϕ}/m_{χ} and m_{ϕ}/v remain
- $V_{\min} = -\frac{v^2}{108g_3^2} \left(9m_\phi^2 m_\chi^2\right) \Rightarrow Z(3)$ invariance spontaneously broken at $m_\phi/m_\chi \lesssim 1/3$

- Without perturbative matching, phase diagram parametrized by 6 dimensionless constants
 - With matching, overall scale v known and only g_3^2/v , m_ϕ/m_χ and m_ϕ/v remain
- $V_{\min} = -\frac{v^2}{108g_3^2} \left(9m_\phi^2 m_\chi^2\right) \Rightarrow Z(3)$ invariance spontaneously broken at $m_\phi/m_\chi \lesssim 1/3$
 - At weak coupling, strongly 1st order transition at $m_{\phi}/m_{\chi}=1/3$

- Without perturbative matching, phase diagram parametrized by 6 dimensionless constants
 - With matching, overall scale v known and only g_3^2/v , m_{ϕ}/m_{χ} and m_{ϕ}/v remain
- $V_{\min} = -\frac{v^2}{108g_3^2} \left(9m_\phi^2 m_\chi^2\right) \Rightarrow Z(3)$ invariance spontaneously broken at $m_\phi/m_\chi \lesssim 1/3$
 - At weak coupling, strongly 1st order transition at $m_{\phi}/m_{\chi}=1/3$
 - With finite g_3^2/v , expect weakly 1st order fluctuation induced transition

- Without perturbative matching, phase diagram parametrized by 6 dimensionless constants
 - With matching, overall scale \overline{v} known and only g_3^2/v , m_ϕ/m_χ and m_ϕ/v remain
- $V_{\min} = -\frac{v^2}{108g_3^2} \left(9m_\phi^2 m_\chi^2\right) \Rightarrow Z(3)$ invariance spontaneously broken at $m_\phi/m_\chi \lesssim 1/3$
 - At weak coupling, strongly 1st order transition at $m_{\phi}/m_{\chi}=1/3$
 - With finite g_3^2/v , expect weakly 1st order fluctuation induced transition
- In full theory, phase transition known to be weakly 1st order \Rightarrow latter scenario favored

- Numerical simulations needed to study transition and find optimal matching to full theory
 - Match correlation lengths in various channels

- Numerical simulations needed to study transition and find optimal matching to full theory
 - Match correlation lengths in various channels
 - Simulations underway (Kajantie, Kurkela)

Conclusions

- Z(3) invariant effective 3d theory constructed for pure SU(3) YM theory
 - Perturbative matching to EQCD ensures correct high temperature predictions
 - Correct domain wall physics built in
 - Phase structure similar to full theory

Conclusions

- Z(3) invariant effective 3d theory constructed for pure SU(3) YM theory
 - Perturbative matching to EQCD ensures correct high temperature predictions
 - Correct domain wall physics built in
 - Phase structure similar to full theory
- Nonperturbative matching to full theory near T_c and nontrivial numerical tests await

Conclusions

- Z(3) invariant effective 3d theory constructed for pure SU(3) YM theory
 - Perturbative matching to EQCD ensures correct high temperature predictions
 - Correct domain wall physics built in
 - Phase structure similar to full theory
- Nonperturbative matching to full theory near T_c and nontrivial numerical tests await
- Possible generalizations: addition of quarks through soft Z(3) breaking terms, higher N_c, \ldots